
AKSELI PALÉN

INTERACTION DESIGN SPACE OF GRAPH-BASED
USER INTERFACES

Bachelor of Science Thesis

Examiner: Adj. Prof. Ossi Nykänen

Thesis submitted for review
on June 16, 2015

ii

ABSTRACT

Akseli Palén: Interaction Design Space of Graph-Based User Interfaces
Tampere University of Technology
Bachelor of Science Thesis, 37 pages
June 2015
Information Technology
Major: Hypermedia
Examiner: Adj. Prof. Ossi Nykänen

Keywords: graph-based user interfaces, interaction, navigation, manipulation, collabora-
tion, user interfaces

Graph-based user interfaces have been studied since the 1980s but mainly in the
context of information visualization. Even though they have been applied to a
wide range of applications from social network analysis to audio synthesizers, little
is known about their interaction capabilities on a general level. In this study, by
drawing from the human-computer interaction research of the last 30 years, we
derive a technique and device independent interaction framework consisting of 4
main types and 12 subtypes of interaction on graph-based user interfaces. We discuss
how node-link diagrams can be used, for example, to issue instructions, to mediate
conversation, to manipulate spatial locations, and to explore hierarchically clustered
structures. We target the framework to not outline the best interaction practices
or conventions but instead to widen the perspective and offer insight for the future
graph-based user interface research and development.

iii

PREFACE

This bachelor of science thesis is made for the Faculty of Computing and Electrical
Engineering of Tampere University of Technology.

I would like to give my deep regards to adjunct professor Ossi Nykänen for directing
me gently through the thesis process, our deep and enlightening discussions, and for
all the advices on a broad set of topics. I also want to thank researchers Jukka Huh-
tamäki and Anne-Maritta Tervakari and my friends Samil and Elina for additional
comments, corrections and inspiring discussions.

In Tampere, Finland, on June 16, 2015

Akseli Palén

iv

CONTENTS

1 Introduction 1

2 Interaction 4
2.1 Syntax of interaction . 4
2.2 Levels of interaction . 6
2.3 Types of interaction . 7

3 Instructing 9

4 Conversing 11

5 Manipulating 14

6 Exploring 19

7 Results 23

8 Discussion 25
8.1 Framework . 25
8.2 Future . 27

9 Conclusions 29

References 30

v

LIST OF FIGURES

1.1 Four applications where a graph-based UI plays a central role in their
UI. 2

2.1 InfoViz Co-Authorship network represented as a NodeTrix diagram,
a hybrid of node-link and matrix-based graph representations. 4

2.2 A node-link diagram of the Petersen graph. 4
2.3 The three levels of abstraction in interaction and corresponding ex-

amples in the task of connecting two nodes 7
2.4 Our graphical illustration of the four main types of interaction by

Rogers et al. 8

3.1 A flower menu . 10
3.2 A graphical database query builder of DataPlay query tool 10
3.3 A process editor of homeBLOX, a home automation system 10
3.4 An analog clock implemented with a visual programming tool NoFlo.js 10

4.1 The two types of graph-based conversing 11
4.2 A Prezi diagram created for this study. 12
4.3 The slides of a Prezi presentation are actually frames on a large diagram 12
4.4 Four discussion threads visualized as radial trees 13
4.5 An imaginary graph-based chat where a user can join the discourse

by adding a bubble node . 13

5.1 The graph-based UI of Audulus, an audio processing application . . . 15
5.2 A SPARQL query and its visual counterpart in vSPARQ 17
5.3 An RDF graph of a WikiData entry, visualized with Visual RDF tool 17
5.4 A simplified Git revision history of the VisualRDF tool 18

6.1 Concurrent geometric and semantic zooming in a hierarchically clus-
tered graph . 20

6.2 An evolution of a discussion thread 22

8.1 A schematic map of a subway station in Rome for the blind 26
8.2 TouchStrumming, an interaction technique where a user can pull and

release a link to put it into vibration 26
8.3 DeepaMehta and its situation-centered user interface 27
8.4 Node-RED, a process control tool for the Internet of Things 27

1

1 INTRODUCTION

Wholly new forms of encyclopedias will appear, ready-made with a mesh
of associative trails running through them

– Vannevar Bush, As We May Think, 1945.

Good hypertext design is based on [. . .] the use of cues to show the
structure of the information space to the user.

– Jacko Sears, Human-Computer Interaction Handbook, 2008

Graph-based user interfaces are types of user interfaces (UI) that employ graph

structures as their main UI metaphor [1]. In other words, a graph-based UI exploits

the resemblance with familiar network structures, such as tree branches, forest paths,

and animal skeletons. By mimicking their workings, a graph-based UI allows the

interface users to benefit from the existing knowledge on how the interaction with

networks should be carried out. Other familiar, even though more human-induced

structures include building frameworks, star constellations, fishnets, molecule illus-

trations, and maps, consisting of cities and connecting roads.

Probably due to the familiarity and also the generality of graph structures, graph-

based UIs are applied on a wide range. Applications can be found from mind map-

ping and network analysis to audio synthesizers and linguistic networks as illustrated

in Figure 1.1, in addition to genetic maps, database design, semantic networks, and

many others, listed for example in [2]. Starting from the 1980’s [3][4] multiple fields

have studied graph-based UIs in their own context, notably knowledge engineering,

process engineering, and information visualization. However, in spite of the vastness

of applications and the array of fields, only little is known about graph-based UIs

in general. A media processing related review by Schultz et al. in 2008 [1] is one

rare instance where these UIs are handled on a general level. Thus, to begin to fill

this gap, in this study we try to approach the subject from a domain-independent

perspective.

As the variety implies, graph-based UIs are interacted within many ways and for

many purposes. However, the interaction is a wide concept. For example, let us

consider two cases: discussing with a person and searching for a flower from a forest.

Even though the both require interaction with the environment, they fundamentally

differ in how the interaction is carried out. Thus, it is not obvious what is meant

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Four applications where a graph-based UI plays a central role in their UI.
Starting from the top-left corner, an online mind mapping application MindMeister
[5], a graph visualization platform Gephi [6], an ambient music composer mobile
application Aura Flux [7], and an online thesaurus Graph Words [8].

CHAPTER 1. INTRODUCTION 3

by interaction in graph-based UIs either. Which kind of graph-based interaction

is possible? Are there some fundamental limitations? Altogether, where are the

borders of the interaction design space of graph-based UIs?

To answer these questions, in this study we review graph-based UIs on a general

level and try to get a grasp on what interactional extents graph-based UIs are

used or could be used for. By building upon interaction models and frameworks

suggested in human-computer interaction literature, and by drawing examples from

several publications, we construct a descriptive, interaction-type and user-intention

based interaction framework for graph-based UIs. We target this framework to be

device and interaction technique independent and thus to be applicable wherever

graph-based UIs emerge.

For the task, we first conducted a systematic literature review on about 20 years of

publications of two major human-computer interaction journals, Journal of Human-

Computer Studies [9] and Proceedings of the ACM Symposium on User Interface

Software and Technology [10], and shorter time spans of several others [11–16].

From the findings we picked references and keywords for a more focused search with

three science-oriented search engines, Google Scholar [17], ACM Digital Library [18],

and IEEExplore [19], allowing us to reach both the oldest and the most important

publications on graph-based UIs.

To outline the structure of the thesis, we will first discuss interaction in graph-based

UIs in general. We define what is meant by interaction and how it applies to graph-

based UIs. Then we approach the graph-based interaction from the point of view

of four main interaction types: instructing, conversing, manipulating, and exploring,

and provide examples and further analysis for each. Finally, we will discuss the

validity and extent of the survey and take a glance into the future of the graph-

based interaction.

4

2 INTERACTION

We begin by describing our approach and the context of the study. First, we examine

the graph-based interaction in general. Secondly, we deploy an interaction model by

Ren et al. [20] to delimit the study, and lastly an interaction framework by Rogers

et al. [21] to derive an initial structure for our framework.

2.1 Syntax of interaction

All the familiar structures mentioned in Chapter 1 can be modeled with graphs. Be-

cause of the generality and that the graph being an abstract, mathematical concept

without a form of presentation by its own, it can be called a fundamental structure

that can represent everything [2, p. 24][22]. To in turn represent a graph, apart

from its mathematical notation, adjacency matrices or node-link diagrams are typ-

ically used. Even though the matrices might outperform the node-link diagrams

in many information seeking tasks [23], and also hybrids exists [24] as illustrated

in Figure 2.1, the node-link representation similar to Figure 2.2 is more prominent

[25, p. 144] and the graph presentation method of the graph-based UI. Therefore, to

clarify, an alternative or even more accurate term to refer to the type of UI discussed

here would be the node-link user interface.

Before a deeper analysis of the interaction on a node-link diagram, we must first

define what we exactly mean by the node-link diagram. To give a definition that is

Figure 2.1: InfoViz co-authorship network rep-
resented as a NodeTrix diagram, a hybrid of
node-link and matrix-based graph representations.
Adopted from [24].

Figure 2.2: A node-link
diagram of the Petersen
graph.

CHAPTER 2. INTERACTION 5

formal enough for our purposes, we will use graph theoretic terminology but avoid

mathematical notation. We define a node-link diagram being a set of nodes and

links. Each node and each link has a geometric object in a n-dimensional space and

a physical object fitted inside the boundary of the geometric object. Additionally,

each node is associated with an abstract vertex and each link is associated with

an abstract edge, and thus, the node-link diagram as a whole is associated with an

abstract graph. Finally, we define a physical object to be a visual, tactile, auditory,

or other type of perceivable object in the physical world. The geometry of an

auditory object, for example, could mean a size and shape of the area where the

audio can be heard. This definition allows us to describe node-link diagrams in both

2D and 3D, apply graph-theoretic results and algorithms to them, and also it does

not limit us to the visual mode of interaction.

With the aid of the definition, we can analyze the interaction on a node-link diagram

further and employ the linguistic terminology of Hutchins et al. [26]. We can say

that the syntax of the interface output language of a graph-based UI equals the

definition of the node-link diagram. In other words, the syntax, i.e. the structure

of this diagrammatic language, includes the formalism of the graph, enhanced with

physical objects and geometric properties. Governed by the syntax, the physical

objects emit signals for the users to perceive and conceptualize, and thus form the

vocabulary of the interface output language of a graph-based UI.

To consider the interface input language, on most graph-based UIs the users can, in

addition to perceiving, refer to the physical objects. The users are able to interact

directly with the nodes and links, for example by pointing and dragging. Therefore,

the interface input language of those graph-based UIs is, if not symmetric, at least

similar with the output. By deriving from [26], having this kind of inter-referential

I/O makes each of those graph-based UIs a direct manipulation interface, a renowned

concept introduced by Shneiderman in the early 1980’s [27]. From this notion, we

can include the well-known benefits and drawbacks of direct manipulation [26], even

though they are left to the reader to explore.

As nodes and links are now identified as pieces of syntax, carrying semantics and

physical form of their contents, do they also have semantics on their own? And more

interestingly from the cognitive perspective, why do we interpret the semantics as we

do? It has been stated that the explicit links make it easy for a human to understand

structure [28, 29]. A reason behind this is that the links exploit the gestalt law of

continuity [30, p. 61] and therefore allow the human mind to understand that

the linked nodes are related. In addition, many graph layout algorithms, especially

force-directed algorithms, arrange the nodes so that the configuration proximity, i.e.

the distance of two nodes on the diagram, is proportional to their distance in the

abstract graph [31]. This more implicit relationship exploits, we propose, the gestalt

law of proximity, making the mind to understand that two nodes are related if they

can be seen nearby each other. Through these two laws, nodes and links efficiently

CHAPTER 2. INTERACTION 6

emit the message of relatedness. In spite of the importance of the cognitive aspect

in UI design, we do not push the aspect further but only wanted to establish an

initial view on what human properties the graph-based interaction is based on.

As a general matter, we would like to elaborate the terminology used when we refer

to parts of a node-link diagram or an abstract graph. As implied in the definition,

the counterparts of nodes and links in a graph-theoretic, abstract graph are called

vertices and edges. Where nodes and links include a physical representation, com-

monly a graphical form, the vertices and edges do not. In spite of that in this study

we use this separation, we want to emphasize that many authors use the terms in-

terchangeably and do not make a distinction between the mathematical concepts

and their physical representations.

2.2 Levels of interaction

On node-link diagrams and in user interfaces in general, the interaction happens on

many levels of abstraction. On a low level we could understand the interaction as

the events of pressing down a button or releasing it, changing color of a pixel et

cetera. In contrast on a high level, we could consider user’s long-term goals and how

system responses to those. For example, if a couple wants to spend an evening out,

they can interact with a restaurant. The restaurant hopefully responses by allowing

meals to be ordered and the couple’s hunger for food or a shared experience to be

answered. The levels are numerous.

For our task to map the interaction design space of graph-based UIs, it is not

convenient to consider all the levels. What we need is a suitable level of abstraction

that releases us from domain-specific, very high-level tasks but keeps us away from

system-specific input methods and technologies like the mouse or the touch screen.

With this kind of restriction, we might be able to create a framework that is general

enough but still as close to the interface as possible.

In 2013, Ren et al. proposed a three-level interaction model to catch the hierarchy

in interaction tasks: goals, behavior, and operations [20]. A task on a goal-level

represents a small task that users intend to do and requires users to behave on the

behavior-level to reach the goal. This conscious behavior, a set of behavior-level

tasks, is transformed to more or less subconscious physical operations that become

detected at the interface as raw input primitives, operation-level tasks. Therefore,

the operation-level regards interaction as how it happens on the exact surface where

the signals from the human are sensed by the system and vice versa.

For a concrete example in a graph-based UI, an intention to connect two nodes is a

goal-level task. To reach this goal, some graph-based UIs require the user to behave

in drawing a line between the nodes. On the operation-level, this behavior is divided

CHAPTER 2. INTERACTION 7

Figure 2.3: The three levels of abstraction in interaction and corresponding examples
in the task of connecting two nodes; (a) an intention to create a new connection, (b)
a drag between the nodes, and (c) input events recognized by the software. Derived
from [20]

into the input events of a press, multiple moves, and a release. See Figure 2.3 for

an illustration.

In this study, we focus to the goal level. Therefore, in spite of being important for

UI design, we will not discuss behavior-level tasks such as a mouse click or a pinch

zoom. Nonetheless, the two behavior-level tasks are commonly utilized in higher,

goal-level tasks like selecting a node or zooming in. These higher tasks are not device

or input method dependent but still common in graph-based UIs [1]. Therefore they

are exactly the tasks the framework should be constructed on.

2.3 Types of interaction

In their book Interaction Design, Rogers et al. proposed there to be four main

types of interaction: instructing, conversing, manipulating, and exploring [21]. For

example in a restaurant, the chief cook gives instructions to a helper. By these

instructions, the helper manipulates the ingredients until the meal is ready to be

delivered. A waiter delivers the meal by exploring the tables to find the right

customers and, once found, probably interrupts their conversation by handing over

the meal. For a graphical illustration of the four types, see Figure 2.4.

For a more abstract description, instructing is about executing commands, selecting

actions, or doing gestures to trigger them. Conversing brings in a more equal dialog,

an iterative interchange of messages common in natural human communication.

However, when we consider manipulating interaction, the world and its objects are

not discussed with, but more directly constructed and modified by using the common

knowledge of how the world behaves. In exploration, by contrast, this knowledge

is not used to change the world but instead to change one’s perspective on it to

understand what it contains.

CHAPTER 2. INTERACTION 8

Figure 2.4: Our graphical illustration of the four main types of interaction by Rogers
et al. [21]; (a) instructing an agent i.e. human or computer, (b) conversing with
an agent, (c) manipulating the surrounding world, and (d) exploring the world by
changing one’s perspective.

In our pursuit for graph-based interaction tasks, this framework of the four inter-

action types quarters the search space. Therefore, in addition to that it helps us

in determining which kind of tasks to look for, it enforces us to explore these tasks

from each angle. Furthermore, the angles immediately raise a non-trivial question.

Are all the main types of interaction possible with graph-based UIs? For instance,

how can one instruct through a node-link diagram? How could one converse with

them?

On top of the four interaction types we build our graph-based interaction framework.

In the following chapters, we go through each type separately, present studies and

applications to get a grasp on in which types of interaction tasks they are realized,

and propose graph-based UI specific interaction subtypes for each. The resulting

two-level taxonomy will be our graph-based interaction framework. As instructed,

we begin with the graph-based instructing.

9

3 INSTRUCTING

From the literature, we can identify two types of graph-based instructing:

• Executing : a node-link diagram used as a menu of instructions

• Programming : a node-link diagram used as an instruction

Menus, consisting of commands, are in some occasions represented as node-link

diagrams. In 2008, Bailly et al. introduced a flower menu [32], a type of radial

menu and marking menu, where once the menu is activated, the user is shown a

set of radially layouted commands that are connected with links to a node at the

menu center, as in Figure 3.1. The user is required to make a gesture along one of

the links to execute the connected command. Therefore, we suggest this to be a

clean example of instructions given through a graph-based UI and a typical case of

executing graph-based instructing.

We can also think of graphical database queries [3, 34]. For example in 2012,

Abouzied et al. described DataPlay [33], a database query tool that allows users

to build and manipulate graphical query trees specified by a graphical query lan-

guage and represented as node-link diagrams similar to Figure 3.2. Once a query

tree is ready, user can execute it in a manner akin to a traditional database query.

What we see here is a combination of manipulating and instructing interaction types;

user creates a node-link diagram through manipulation and the node-link diagram,

as a whole, represents one single instruction. We see this combined type to be an

instance of programming graph-based instructing.

Another and slightly different case where a node-link diagram represents a single

instruction can be found in the context of process control. In 2013, Rietzler et al.

introduced homeBLOX [35], a home automation system with a graph-based UI,

presented in Figure 3.3. The homeBLOX UI was designed to manage a network

of sensors, operators, and devices. For example in a homeBLOX compliant home,

the sensors of a morning alarm and brightness level could be combined with an and

operator to turn on a coffee maker. Now, we can notice that the resulting system is

one large instruction for how the home should work. Being created by manipulation,

this is another example of the combined interaction type. However, in contrast with

the DataPlay, the target of instruction is an ongoing, continuous process instead of

an operation to be issued and executed in a blink of an eye. Therefore, if we classify

CHAPTER 3. INSTRUCTING 10

Figure 3.1: A flower menu. Restored
from [32]

Figure 3.2: A graphical database
query builder of DataPlay query tool.
Adapted from [33]

Figure 3.3: A process edi-
tor of homeBLOX, a home
automation system. Adapted
from [35]

Figure 3.4: An analog clock implemented with
a visual programming tool NoFlo.js. Adopted
from [36]

the use of DataPlay further as discrete programming graph-based instructing, the use

of homeBLOX can be seen as an instance of continuous programming graph-based

instructing.

Finally, to justify the terms executing and programming, we notice the instruction

construction in DataPlay and homeBLOX to be a type of visual programming [1],

and basically similar to the programming in Figure 3.4. In contrast with the flower

menu where a user manually executes gestures to instruct, here the user programs

the instruction in a formal visual language. Visual programming is an important

application of graph-based UIs and further discussed in [1, 37].

11

4 CONVERSING

From the literature, we can identify two types of graph-based conversing:

• Discrete: a node-link diagram used as a message (Figure 4.1a)

• Continuous : a node-link diagram used as a medium (Figure 4.1b)

Many mind mapping tools, such as MindMeister (Figure 1.1), Freemind [38], and

Prezi [39], allow sending mind maps to others to be explored, learnt, and modified. In

some occasions, as in Prezi, the recipients are able, if allowed, to reply by comment,

by another mind map, or by a modified version of the original map. In a workplace

meeting, a workflow diagram can be presented as a part the conversation. In all the

cases, a node-link diagram is used as a discrete message and acts as a vocabulary

item of the conversation, similar to a verbal sentence. Therefore, in spite of being

often preceded or followed by nondiagrammatic messages, we label this transmission

of node-link diagrams as discrete graph-based conversing.

In addition to mind mapping, MindMeister and Prezi can be used to conduct pre-

sentations on node-link diagrams similar to the diagram in Figure 4.2. A Prezi

presentation consists of a sequence of frames where each frame is a view to the di-

agram, as illustrated in Figure 4.3. As the diagram is presented to the audience in

a frame by frame fashion, the syntax of the node-link diagram, including nodes and

links, is used to construct the message of each frame. In spite of the contrast to

transmitting a diagram as a whole, we still see this as another example of discrete

graph-based conversing.

For the continuous graph-based conversing, MindMeister and Prezi allow real-time

collaboration on a node-link diagram. Multiple users on separate devices can explore

Figure 4.1: The two types of graph-based conversing: (a) diagram as a message and
(b) diagram as a medium.

CHAPTER 4. CONVERSING 12

Figure 4.2: A Prezi diagram
created for this study.

Figure 4.3: The slides of a Prezi presentation
are actually frames on a large diagram. The
frames are associated with their sequence num-
bers, presented on the black circles.

and manipulate the diagram concurrently and their moves and modifications are

shared instantly, thus creating a sense of shared virtual space. Even though the syn-

tax of conversing still consists of nodes and links, the node-link diagram as a whole

has become a medium for conversation. The same notion of the diagram becom-

ing a medium has been made by Laufer et al. in their Prezi-introducing paper [39].

Collaboration on node-link diagrams has also been discussed by Tolosa et al. [40].

To provide yet another view to graph-based conversing and to using a node-link

diagram as a medium, we have to first discuss conversation visualization. In 2008,

Gómez et al. visualized several large discussion threads of Slashdot website by using

radial trees [41], presented in Figure 4.4. These discourse diagrams [42] allow brief

analysis of massive conversations. For example, possibly important comments can

be pointed out from their numerous child nodes or a long-lasting debate can be

recognized from a long, nonbranching stem. Altogether, these diagrams help in

understanding the topics and the structure of large-scale conversations, and therefore

they have also found use in nonscientific purposes [42].

As our topic here is conversation, it is important to note that these discourse dia-

grams visualize the result of especially conversing type of interaction. The interac-

tion with the plain discourse diagrams is still only exploration and not conversation.

Although, this does not always have to be the case. What we now suggest is that,

in addition to being navigable and readable visualizations [42], the UIs of these di-

agrams could also allow joining the discourse. For example, by adding a new leaf

node to the diagram a user could reply to the comment represented by the previous

node, thus taking part in a graph-based discussion, and as visioned in Figure 4.5.

We do not take this idea further or claim it a successful approach to communication

but only want to show that this kind of interaction could be possible and to provide

yet another example of continuous graph-based conversing.

CHAPTER 4. CONVERSING 13

Figure 4.4: Four discussion threads
visualized as radial trees. Each node
represents a comment. At the bottom-
right two users have had a long-lasting
debate. Adapted from [41]

Figure 4.5: An imaginary graph-based
chat where a user can join the dis-
course by adding a bubble node. The
discourse progresses from left to the
right. The joke is adopted from
a image sharing website at smart-
phowned.com

14

5 MANIPULATING

From the literature, we can identify four types of graph-based manipulating:

• Geometric: direct manipulation of the geometry

• Topological : direct manipulation of the topology

• Algebraic: manipulation through symbols

• Temporal : manipulation through a version history

When a user engages in a manipulating interaction with a node-link diagram, the

diagram becomes modified. Whether the manipulation is done directly, in direct

manipulation manner, or via instruments, such as formal language or version history,

the geometry or the structure of the diagram becomes altered, and thus the state

of the world around the user changes. There is two types of changes; the changes

can happen on the geometric properties of the nodes or links, or in the topology of

the underlying abstract graph. However, we note that the interaction that causes

the changes has a separate taxonomy, and that taxonomy is the four-part taxonomy

discussed here.

In an abstract graph, vertices and edges do not have spatial locations, sizes, or

shapes. However in node-link diagrams, as the definition in Chapter 2 implies, these

geometric attributes are the fundamental requirement for representation. Therefore,

it is not surprising that in many applications that realize a graph-based UI the spatial

arrangement of nodes, also called the configuration, is in high importance [2]. We can

use the aforementioned Prezi as an example. In a Prezi diagram, the visual beauty

of the diagram depends highly on the clear but interesting arrangement of nodes and

links. The nodes can be placed and moved freely and arranged in any configuration

that the creator sees suitable. A set of other examples are provided by a study by

Schultz et al. where they examined 14 graph-based UIs used to control process flows

such as audio synthesis and 3D shader design [1]. Interestingly, they found that

many of these applications did not provide an automatic graph layout algorithm to

arrange the nodes but instead left the freedom or the burden of configuration for the

user. The same applies to Prezi; there is no method for automatic rearrangement.

We see these nonautomatic and direct spatial modifications of the node locations as

instances of geometric graph-based manipulating.

In addition to the mere spatial locations of nodes and links, Prezi lets users to

modify their rotation and scale via handles provided at the corners. Same applies

CHAPTER 5. MANIPULATING 15

Figure 5.1: The graph-based UI of Audulus, an audio processing application. Adopted
from [44]

to a mind mapping and charting application LucidChart [43], where multiple types

of diagrammatic components can similarly be transformed via scaling and rotating.

When we apply these geometric transformations, the average spatial locations or

the physical objects of nodes and links do not necessarily change even though their

geometric boundary does. Therefore, we also regard issuing these transformations

to the boundaries, when done in a direct manipulation manner, as instances of

geometric graph-based manipulating.

Topological graph-based manipulating is about directly meddling with the structure

of the node-link diagram. In other words, the diagram is manipulated so that the

underlying abstract graph changes i.e. vertices or edges become created or removed.

In Audulus [44], a software sound synthesizer similar to the audio processing appli-

cations analyzed by Schultz et al., the nodes represent sound generators or effects,

and links represent cables or streams that govern how audio signals flow between

the nodes, as presented in Figure 5.1. In Audulus, the configuration brings clarity

for the user but does not affect the sound processing network. Instead, the topology

of this network defines how the signals flow and how the system sounds.

If we furthermore examine the UI of Audulus in Figure 5.1, we notice that each node

is equipped with its own interface for manipulating its parameters such as frequency

CHAPTER 5. MANIPULATING 16

or amplitude. In MindMeister, a user can directly modify a textual content of a

node. These content-specific interfaces are not anymore graph-based or even resem-

ble node-link diagrams. Therefore, we now find that the physical objects of nodes

as well as links can expose their own UI completely independent of the surround-

ing graph-based UI. The opposite parent-child relationship is also possible and even

typical. As in both MindMeister and Gephi, the graph-based UI is embedded into

an outer, traditional WIMP-like UI that consists of non-graph-based UI elements

like menus, toolbars, and buttons.

Hence, even though these inner or outer UIs could offer interaction methods for

instructing, conversing, manipulating, or exploring, we do not consider their use

being graph-based interaction. However, we note two exceptions. First, if an inner or

outer UI is a graph-based UI then the interaction is naturally graph-based. Second,

if the use of a non-graph-based inner or outer UI affects the node-link diagram,

their use takes part in a graph-based interaction, although indirectly. For the latter

case, MindMeister and Gephi provide an example. In both applications, the outer UI

provides tools for layouting the diagram automatically. Therefore, in this latter case,

the interaction is not anymore direct but instrumental [45], and we can categorize

it further as algebraic or temporal.

In algebraic graph-based manipulating, nodes, links, and their properties are refer-

enced and manipulated via their symbolic representations. The symbolic represen-

tation can exists in the form of a simple button or even a complex formal textual

language. For instance, SPARQL 1.1 is an RDF query language designed for both

querying and manipulating semantic RDF graphs [46]. If a node-link diagram is

based on an RDF graph and we update that graph by SPARQL, we classify this

interaction being an instance of algebraic graph-based manipulating. In this case, in

spite of that the input interface language is textual and not graph-based, the output

interface language is still the language of the node-link diagram and thus we see this

interaction to be graph-based, even though indirect.

Could a symbolic formal language for manipulation be also graphical? In addition to

textual languages, the literature reveals graphical query languages for RDF graphs,

for example SPARQL-based RDF-GL [47] and vSPARQL [48]. A simple example

of the latter is presented in Figure 5.2. In the both cases, the queries are node-link

diagrams and therefore their use includes graph-based interaction. However, neither

supports queries that manipulate RDF graphs and therefore their use could only

be accounted as graph-based instructing, similar to the use of DataPlay query tool

in Chapter 3. On the other hand, the result of a SPARQL query can be an RDF

graph [46] that can furthermore be represented as a node-link diagram, as done in

Figure 5.3. Would then a graphical modification to the query also cause a change

in the diagram? For our taxonomy, does it matter that the symbols in the query

do not directly refer to the nodes or links? In this case, both the query and the

RDF graph are used as instruments to modify a node-link diagram and therefore,

CHAPTER 5. MANIPULATING 17

Figure 5.2: A SPARQL query and its visual
counterpart in vSPARQL. Adapted from [48]

Figure 5.3: An RDF graph of
a WikiData entry [49], visu-
alized with Visual RDF tool
[50]

regardless the multiple intermediate levels of symbolism, we still classify this as a

case of algebraic graph-based manipulating.

For the fourth subtype, where the previous three subtypes only advanced the current

state of a node-link diagram, in temporal graph-based manipulating a wider time

dimension of the diagram is regarded. Typical examples are the undo/redo function

and a version timeline, as available in Prezi and MindMeister. In these cases, the

current state of the diagram is reverted to a previous version, or changed back to a

previously reverted, future version. Thus we note that the version history is linear ;

there is only one simple timeline.

For a nonlinear instance, we must first think of distributed revision control systems

such as Git or Mercurial. The both are popular tools in software development as

they help developers to maintain different versions of the project and develop new

features independently and simultaneously. In a large Git project, the codebase of

the project typically does not have one current state but instead is divided into

multiple branches, for example one branch for each new feature. Later on when a

feature of the branch is finished, it can be merged to a release branch for a public

release.

As a result of this practice, the version history is not linear but a directed acyclic

graph [51]. The graph can be visualized as a node-link diagram, as illustrated

in Figure 5.4. We can interpret the diagram as a visualization of the temporal

manipulations of a source code where the time continuum of the code becomes

splitted or multiple continuums merged, thus yielding modifications to the code.

We propose that one could have a similar nonlinear version history for a node-link

diagram, for example for the visually programmed clock in Figure 3.4. Similar

proposition has been made by Chen et al. for 3D meshes and for images in general

[52]. However, as we are unable to find a realized case of this kind of nonlinear

temporal graph-based manipulating from the literature, for now, we can only imagine.

There exists additional views into structure manipulation. For instance in 2012,

Hoarau & Conversy derived a set of requirements for manipulating objects through

CHAPTER 5. MANIPULATING 18

Figure 5.4: A simplified Git revision history of the VisualRDF tool. The tool was
employed in the production of Figure 5.3. Adapted from [53]

structures [54]. The requirements encompassed features such as search and selection

of structured objects, and exploration and comparison of alternative versions, thus

implying the importance of an undo/redo function and a version history. Interest-

ingly, the requirements also noted benefits of informality, discussed a decade earlier

by Thimbleby under the title permissive user interfaces [55]. Within the context of

graph-based UIs, the informality can refer to the allowance of isolated nodes. For

example, MindMeister does not allow such disconnected nodes where Aura Flux and

Gephi do (see Figure 1.1).

As the requirements of Hoarau & Conversy indicate, the ability to select is vital

to many manipulating tasks. For example in MindMeister, one can manipulate

the topology of a mind map by cutting, copying, pasting, deleting, and relocating

groups of selected nodes. In Prezi, one can via selection rotate and scale nodes

and links in groups, thus alleviating their geometric manipulation by reducing the

viscosity [54] of the UI i.e. the laboriousness of change. However, with the taxonomy

of geometric, topological, algebraic, and temporal graph-based manipulating, we

cannot unambiguously classify the task of selection. It is used to identify the items

for manipulation, to compose groups, or to point out interesting parts of a diagram

for discussion. In a way, it is a part of algebraic interaction; the selection could be

seen as a symbol for a set of nodes and links. On the other hand, it usually precedes

the actual manipulating interaction, whether geometric, topological, algebraic, or

temporal. Therefore, in this study, we decide to label it more as a supporting task

and thus we do not see the benefit in establishing a dedicated interaction type for it.

As our decision, the role of selection stays the same in the case of the graph-based

exploring, the topic of the next chapter, Chapter 6.

19

6 EXPLORING

From the literature, we can identify four types of graph-based exploring:

• Geometric: moving by applying geometric transformations

• Topological : moving along the structure

• Algebraic: altering the search space through symbols

• Temporal : moving in navigation or version history

We use the term exploring in a broad sense; in addition to exploring, being activity

to find something new, we include the activities of pathfinding, described as navigat-

ing to a predetermined location, and searching, described as looking for something

specific even though the location is not exactly known. Altogether, regardless of the

goal, we refer to interaction where users change their view of the surrounding world.

Before defining the four exploration types, we discuss the concept of view. We

define the view as a portion of the information space that is perceivable to the user

at a given time. Often, the view can be understood as the position of the user in

the information space. Sometimes, the view is assembled from pieces across the

space and no single location can be determined. In either way, the very reason for

exploration is, as we see it, that one cannot perceive everything at once and thus

needs to rearrange the space or move in it.

Not all graph-based UIs allow altering the view. For example in the music composer

Aura Flux (Figure 1.1), a node-link diagram can be constructed only within the

area of the screen and there is no means to alter the view. On the other hand,

some graph-based UIs support multiple concurrent views. Not unlike to multiple

windows in a WIMP interface, in graph-based UIs, multiple views can be used for

graph comparison, creating connections between distant nodes, or moving or copying

nodes and links from place to another. Alternatively within a single view, the space

can be transformed to give a perception of multiple concurrent locations. These

multiple locations are often discussed within the context of distorted focus+context

views like fisheye views [56] and thus called multiple focal points or multiple foci.

For further details, the reader could look into articles by Schaffer et al. [57] and

Toyoda & Shibayama [58].

In geometric graph-based exploring, users directly apply geometric transformations

to their views. In contrast, in geometric manipulation in Chapter 5 these transfor-

mations were applied to nodes and links. Such exploration can be realized in the

CHAPTER 6. EXPLORING 20

Figure 6.1: Concurrent geometric and semantic zooming in a hierarchically clustered
graph; (a) before zooming, (b) after zooming. Derived from [57]

form of panning or zooming the view, which is typical to a zoomable user interface

(ZUI) [59]. The ZUI style of exploration is common in graph-based UIs as noted by

Schultz et al. [1] and Tominski et al. [60, p. 662] and also appear in MindMeister,

Gephi, Prezi, and Audulus. Therefore, even though there are exceptions, like Aura

Flux, we can conclude that most graph-based UIs are ZUIs as well.

Where in geometric exploration the transformations are typically not constrained

except by the boundaries of the node-link diagram, in the topological graph-based

exploring the transformations happen only along the structure. For example in

both MindMeister and FreeMind, users can topologically explore a mind map by

using arrow keys to move a focus point from a node to an adjacent one. The view

automatically follows the focus. In contrast, with the aid of a pointer such as

the mouse, the both applications allow users to pan and zoom freely. For another

example, Tominski et al. mentioned edge-based navigation [60]. By taking the user

to another end of a link just by pressing on the link, the edge-based navigation

makes it easy to move from node to another even when there is a long distance

between.

In spite of that in the mentioned examples the topological exploration can be seen

as a constrained geometric exploration, this is not always the case. When semantic

zooming [2] is combined with hierarchically clustered graphs as done by Schaffer

et al. in 1996 [57], we arrive to situations where traveling along topology shows

us new information that could not be revealed by geometric transformations. In

the hierarchically clustered graphs of Schaffer et al., a node is broken down into

multiple nodes while a user zooms in and merged back while the user zooms out,

as illustrated in Figure 6.1. Thus, such exploration changes the topology of the

presented node-link diagram, which is impossible with geometric transformations

alone.

With the third type, algebraic graph-based exploring, we refer to exploration where

CHAPTER 6. EXPLORING 21

users temporarily alter the node-link diagram by joining, transforming, or filtering

nodes and links, and does that in an indirect manner, through a symbolic language.

As with algebraic manipulation in Chapter 5, the symbolic language does not have

to be textual. We adopt the term algebraic from Baudel, who used it to label this

type of navigation in structured data [61]. We use the term more in a metaphorical

than in a strict mathematical sense, allowing us to include all the cases where users

apply search queries, filters, or clutter reduction techniques to reduce, rearrange, or

re-emphasize the nodes and links, thus making the exploration more efficient.

Without recapping the symbolic input methods discussed in Chapter 5, we can

discuss the output methods. We found multiple techniques proposed in the literature

for altering node-link diagrams to alleviate exploration. For example, node-link

diagrams can be filtered by clustering [57, 58, 62], graph splatting [63], edge splatting

[64], ghosting [2], or hiding [2]. In some occasions as in Gephi, not unlike penetrating

through a dense jungle with a machete, nodes of a dense diagram can be manually

moved to alleviate exploration. In addition to Baudel, filtering of graphs is discussed

also by Marshall et al. [65], Tominski et al. [60, p. 666], and Landesberger et al.

[66]. All in all, we can see that the issue of how a node-link diagram should be

temporarily modified for optimal exploration is widely studied in the field of graph

visualization.

For the fourth type, temporal graph-based exploring, we notice that users can modify

their views also in the time dimension. As mentioned in Chapter 5, graph-based UI

might include a version history, for example in the form of a version timeline or an

undo/redo function. Users are able to traverse the history and thus we can count

this as an instance of temporal graph-based exploration. In addition, similar to web

browsers, users might be able to traverse their navigation history, providing another

instance.

In the cases of version or navigation history, temporal graph-based exploring is

implemented to alleviate manipulation or exploration [54]. However, it might also

be the primary interaction type of the node-link diagram. For instance, Gómez et al.

visualized the discourse diagrams (Chapter 4) also in the time dimension to examine

how the discussions evolve, as presented in Figure 6.2. Other examples where the

graph evolution is in high importance can be found in the literature of dynamic

graph drawing, for example [64].

The proposed set of four types of graph-based exploring does not form the only pos-

sible taxonomy. Sharing similarities to the manipulation requirements by Hoarau &

Conversy discussed in Chapter 5, in 2009 Tominski et al. presented an information

visualization specific eight-part interaction framework, including tasks for selecting,

abstracting, filtering, and undoing, among others [60]. Multiple other information

visualization specific frameworks have been gathered by Ren et al. [20]. Even though

the frameworks presented by the both research groups provide insight to common

CHAPTER 6. EXPLORING 22

Figure 6.2: An evolution of a discussion thread. Adapted from Gómez et al. [41]

tasks in information visualization systems on all levels of detail, none of them re-

sembles the four-part exploration taxonomy presented here. Among the taxonomies

exposed by the literature review, only one shares resemblance with ours, namely the

three-part navigation framework by Baudel [61] on which our exploration taxonomy

is based.

23

7 RESULTS

As a result of Chapters 3-6, here we piece together an interaction framework for
graph-based UIs, consisting of 4 main types and 12 subtypes of graph-based inter-
action:

R1 Instructing

R1.1 Executing a node-link diagram used as a menu of instructions

R1.2 Programming a node-link diagram used as an instruction

R2 Conversing

R2.1 Discrete a node-link diagram used as a message

R2.2 Continuous a node-link diagram used as a medium

R3 Manipulating

R3.1 Geometric direct manipulation of the geometry

R3.2 Topological direct manipulation of the topology

R3.3 Algebraic manipulation through symbols

R3.4 Temporal manipulation through a version history

R4 Exploring

R4.1 Geometric moving by applying geometric transformations

R4.2 Topological moving along the structure

R4.3 Algebraic altering the search space through symbols

R4.4 Temporal moving in navigation or version history

In addition to the listed subtypes, we encountered alternatives. In Chapter 3, we

identified discrete and continuous cases for graph-based instructing. In Chapter 5,

direct manipulation characterized the subtypes R3.1 and R3.2, and in turn, indirect

manipulation characterized the subtypes R3.3 and R3.4. However, in all the cases,

the selected taxonomies seemed more describing and thus the alternatives were left

out from the framework.

In addition to the graph-based interaction types and subtypes, in Chapter 5 we

saw that the nodes and links can have their own non-graph-based UIs and that a

graph-based UI can be embedded in an outer UI. Interaction on these inner and

outer interfaces could include any of the main interaction types. For example, if a

user modified a textual content of a node in MindMeister, direct manipulation was

CHAPTER 7. RESULTS 24

used. The outcomes of the interaction with an inner or outer UI could be completely

unrelated to the graph-based UI, and in that case we did not classify the interaction

as graph-based. On the contrary, if the interaction with an inner or outer UI affected

the diagram, we classified it as indirect graph-based interaction.

In addition to the mixed interaction between non-graph-based and graph-based UI,

throughout Chapters 3-6 we confronted tasks that required mixing of types of graph-

based interaction. For example, to execute a search query with DataPlay in Chapter

3, the user first engaged in graph-based manipulating, and then issued the manipu-

lated instruction. In Chapter 6, to explore a dense graph, manipulating the config-

uration was one possible approach. We also confronted apps that allowed multiple

types of interaction. Both MindMeister and Prezi used three types of interaction:

exploring, manipulating, and conversing. However, as a note for the future, we did

not encounter a graph-based UI where all the four main types, including instructing,

would have been incorporated.

As a surprising outcome that we did not note earlier, is the asymmetry of the

subtypes. Where the subtypes R1.1 and R1.2 are similar to R2.2 and R2.1, they

are completely different from the subtypes of R3 and R4, which again are alike.

Is there some fundamental flaw in the approach we selected? Why are topological

instructing or algebraic conversing unsuitable subtypes of graph-based interaction?

Without ruling out the possibility of the first question, we propose instructing and

conversing to be essentially different from manipulating and exploring. As one can

detect from Figure 2.4, instructing and conversing are about communicating with

an agent and manipulating and exploring are about modifying the state of the

world. Additionally, as we saw in Chapter 3, one can either search (explore) for an

instruction from a menu or construct (manipulate) an instruction piece by piece. In

Chapter 4, the conversation emerged from alternate or concurrent manipulation of

a node-link diagram. Therefore it seems that, at least in the case of graph-based

UIs, instructing and conversing are always preceded by an amount of manipulating

or exploring, thus turning topological instructing or algebraic conversing into odd

concepts.

Finally, the framework and its construction showed us that graph-based UIs can be

interacted with, and are already interacted with, in every main interaction type.

Therefore, the study suggests that they do not have any fundamental limitations

from the perspective of interaction in general.

25

8 DISCUSSION

Here we first discuss the constructed framework and its extent. We note a few

oddities and possible flaws and deliberate their reasons. Finally, we reason about

the future of graph-based interaction.

8.1 Framework

In this study, we tried to construct a framework that is independent of how the inter-

action is carried out. For this sake, we focused on the interaction goals and avoided

discussion on input gestures or interface devices. Even though the framework was

built on references where the focus was mostly on visual desktop applications, we

suggest the framework to be applicable in the graph-based UI design regardless

of devices (desktop, tablet, phone), input methods (touch, mouse, voice), or even

modes of interaction (visual, tactile, auditory; see [67]). As noted by both Dam [68]

and Jacob et al. [69, 70], the heterogeneity of devices, input methods, and modes

is nothing but increasing, and therefore we see the independence being an valuable

property. However, because the visual origins and also the spatiality in our definition

of the node-link diagram, limits might occur.

To give an example of a nonvisual graph-based UI and how the framework could be

applied, we can think about a physical ridged subway map designed for the blind

(Figure 8.1). With the aid of the framework, a designer of such a map can identify

the topological exploring interaction being the main interaction type, and by that,

consider including the other types of interaction in the map design. For example,

the designer could consider the executing instructing interaction and implement it

in the form of buttons for user to press to listen some details or to call assistance.

After all, the framework allows the designer to explore the interactional possibilities

of the node-link diagram.

We recommend that the framework is not to be considered exhaustive or final. Even

though we managed to find and review several profound articles on graph-based UIs,

we believe many still left unrevealed. There might be interaction types that we did

not manage to identify. Furthermore, we feel that we did not study deeply enough

the task of selection in spite of its importance in manipulation and exploration. A

CHAPTER 8. DISCUSSION 26

Figure 8.1: A photograph of
a schematic map of a subway
station in Rome for the blind.
Adapted by permission from
[71]

Figure 8.2: TouchStrumming, an interaction
technique presented by Schmidt et al., where a
user can pull and release a link to put it into
vibration. Adopted from [72]

closer analysis on what happens when a user selects nodes, links, or groups of them

could yield additional interaction types. Also, there might be graph-based interfaces

whose interaction design cannot be classified with the framework.

As an example, we have found an interaction task that do not unambiguously fit

into the framework. TouchStrumming, a guitar-play-like interaction illustrated in

Figure 8.2 and introduced by Schmidt et al. in 2010 [72], implies properties of a

node-link diagram that we did not consider. Even though the strumming itself is

a behavior-level task, it is used to put nodes or links into a vibrating motion. The

framework categorizes this as content-specific interaction not related to the graph-

based UI. On the other hand, this is manipulation of a geometric graph enhanced

with string-like physical properties that occur naturally in spider webs and small

tree branches. Therefore from the latter point of view, the vibrations occur in the

structure of the node-link diagram itself.

There is one clear point of discrepancy in the framework. The algebraic graph-

based exploring, R4.3, requires input to be indirect and symbolic. On the other

hand in Chapter 6, we described the type also to involve all interaction where a user

modifies the diagram to make sense of it. The latter included the direct manipulation

case, exemplified by the analogue of a jungle and a machete. One can notice the

inconsistency in the level of directness. A reconsideration could, we suppose, split the

current subtype into two: algebraic graph-based exploring that takes into account

only the symbolic input, and manipulating graph-based exploring that covers only

the cases of pro-exploring manipulation, whether direct or indirect.

To in turn consider the outcomes, we saw that graph-based UIs can be interacted

within every main interaction type. Based on that, we suggested there to be no

fundamental interactional limitations. This suggestion and the fact that graph-

based UIs can embed or be embedded in other types of UIs make us to propose

CHAPTER 8. DISCUSSION 27

Figure 8.3: DeepaMehta and
its situation-centered user in-
terface. Adapted from [73]

Figure 8.4: Node-RED, a process control tool
for the Internet of Things. Adopted from [75]

their usage as general-purpose UIs. Furthermore, we even propose a graph-based

UI taking the role of the primary UI of an operating system. Even though the

proposition is a strong one and might even sound flagrant, there is already a branch

of software development devoted to this, or even more radical goal. One of the

main visions of the networked semantic desktop project DeepaMehta is ”the gradual

replacement of the application-centered user interface” with their semantic graph-

based UI [73], presented in Figure 8.3. For academic reference to DeepaMehta, see

[74]. For a lighter example, after the introduction to the UI of the home automation

system homeBLOX in Chapter 3, we could effortlessly envision a similar UI to be

the primary UI of an embedded control system of an intelligent home.

However, with only the framework and this study, it is hard to say exactly where

would graph-based interaction excel and where other types of UIs provide better

approaches. The goal of the study was not to be conclusive or final. Instead, we

targeted the framework be descriptive, outlining the interaction design space of

graph-based UIs. We propose that from the insight given by the framework and the

study, in spite of the possible flaws, a graph-based UI designer or researcher is able

to see the bigger picture and the richer capabilities of node-link diagrams than what

has been offered by previous, mostly graph visualization centered articles.

8.2 Future

The future of graph-based UIs and the graph-based interaction seems anything but

clear. A boom of graph visualization techniques in the late 1990s (not the least

because the book Graph Drawing by Battista et al. [76]) seems to be still ongoing

(e.g., see the reviews [66, 77]) and supported by advances in visualization tools, such

as D3 [78]. However, relying on our literature review, the tools and the research

seems to be mostly geared toward to the needs of information visualization and

CHAPTER 8. DISCUSSION 28

exploration. Manipulation is rarely directly discussed, with few exceptions like the

paper by Hoarau & Conversy [54].

What comes to the future of graph-based manipulating and also instructing, we

predict that if the advances are to come, they are probably seen within the context of

the Semantic Web, process control, or visual programming, maybe for the purposes

of the Internet of Things. For example, Node-RED [75], presented in Figure 8.4, is a

promising graph-based, open-source tool by IBM for connecting devices and services

together in a visual manner similar to homeBLOX in Chapter 3 and Audulus in

Chapter 5. For conversing interaction, we guess the benefits of collaboration and

the increasing technological support for real-time remote interaction, such as mobile

internet devices and WebSockets [79], to be probable driving forces.

For a riskier guess, the development of intelligent user interfaces might take graph-

based conversing to a different level. By applying machine learning techniques the

research has already been able to produce learning and adaptive graph-based UIs [58,

80] which predict the interactional decisions of the user. With the aid of social data

mining, the interaction sequences can be captured and the decisions predicted [81].

This enhances the one-sided instructing of a machine toward iterative suggestion-

decision conversing with an intelligent agent. Additionally, there exists automated

usability analysis techniques for traditional UIs that turn a traditional UI into a

graph structure before the analysis [55, 82–84]. This implies, we hypothesize, that

the use of a graph-based UI would make this kind of automatic evaluation, if not

an easy, at least an easier task. Finally, as the Semantic Web techniques such as

RDF [85] are from the ground up made to be well-formed network-like structures

to be understood by computers, we could argue graphs to be a natural breeding

ground for applications of machine learning and artificial intelligence, and therefore,

for human to intervene, graph-based interaction might be required.

29

9 CONCLUSIONS

In this study, we constructed an interaction framework for graph-based user inter-

faces with the goal of outlining their interaction design space. We believe we reached

the goal and created a sound and descriptive interaction framework that provides a

wider look on the graph-based UI than the previous studies.

Even though the framework is not conclusive or exhaustive as more interaction types

might emerge, we hope it to help and guide further graph-based UI research and

development by bringing together the capabilities, findings, and instances of graph-

based UI interaction from the last 30 years of highly heterogeneous and continuously

evolving field of human-computer interaction.

30

REFERENCES

[1] Christopher Schultz et al. “An Anatomy of Graph-Based User Interfaces for
Media Processing”. In: Audio Engineering Society Convention 124. Audio En-
gineering Society, 2008-05, pp. 1–6. url: http://www.aes.org/e- lib/

browse.cfm?elib=14625.

[2] Ivan Herman, Guy Melançon, and M. Scott Marshall. “Graph Visualization
and Navigation in Information Visualization: A Survey”. In: IEEE Transac-
tions on Visualization and Computer Graphics 6.1 (2000-01), pp. 24–43. issn:
1077-2626. doi: 10.1109/2945.841119. url: http://dx.doi.org/10.1109/
2945.841119.

[3] Harry K. T. Wong and Ivy Kuo. “GUIDE: Graphical User Interface for Database
Exploration”. In: Proceedings of the 8th International Conference on Very
Large Data Bases. VLDB ’82. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1982, pp. 22–32. isbn: 0-934613-14-1. url: http://dl.acm.
org/citation.cfm?id=645910.673453.

[4] Lawrence A. Rowe et al. A Browser for Directed Graphs. Tech. rep. Berkeley,
CA, USA, 1986.

[5] MeisterLabs. MindMeister Features. 2015. url: https://www.mindmeister.
com/features (visited on 2015-05-30).

[6] Gephi.org. Gephi - The Open Graph Viz Platform. 2015. url: https://gephi.
github.io/ (visited on 2015-05-30).

[7] Hige Promotions Ltd. Aura Flux. 2009. url: http://www.higefive.com/
apps/flux/ (visited on 2015-05-30).

[8] Graphwords.com. Free Online Thesaurus. 2015. url: http://graphwords.
com/ (visited on 2015-05-30).

[9] International Journal of Human-Computer Studies. years 1994–2015, volumes
40–78. Duluth, MN, USA: Academic Press, Inc.

[10] Proceedings of the ACM Symposium on User Interface Software and Technol-
ogy (UIST). years 2001–2014. New York, NY, USA: ACM.

[11] ACM Transactions on Computer-Human Interaction (TOCHI). years 1994–
2004, volumes 1–11. New York, NY, USA: ACM.

[12] Proceedings of the SIGCHI Conference on Human Factors in Computing Sys-
tems (CHI). years 1999–2002. New York, NY, USA: ACM.

[13] IEEE Transactions on Visualization and Computer Graphics. years 1995–2000.
Piscataway, NJ, USA: IEEE Educational Activities Department.

http://www.aes.org/e-lib/browse.cfm?elib=14625
http://www.aes.org/e-lib/browse.cfm?elib=14625
http://dx.doi.org/10.1109/2945.841119
http://dx.doi.org/10.1109/2945.841119
http://dx.doi.org/10.1109/2945.841119
http://dl.acm.org/citation.cfm?id=645910.673453
http://dl.acm.org/citation.cfm?id=645910.673453
https://www.mindmeister.com/features
https://www.mindmeister.com/features
https://gephi.github.io/
https://gephi.github.io/
http://www.higefive.com/apps/flux/
http://www.higefive.com/apps/flux/
http://graphwords.com/
http://graphwords.com/

REFERENCES 31

[14] ACM Transactions on Graphics (TOG). years 2003–2004. New York, NY,
USA: ACM.

[15] Proceedings of the International Conference on Human-computer Interaction
with Mobile Devices & Services (MobileHCI). years 2013–2014. New York, NY,
USA: ACM.

[16] Proceedings of the International Conference on Intelligent User Interfaces
(IUI). years 2000–2002. New York, NY, USA: ACM.

[17] Google. Google Scholar. 2015. url: https://scholar.google.com/.

[18] ACM. ACM Digital Library. 2015. url: http://dl.acm.org/.

[19] IEEE. IEEE Xplore Digital Library. 2015. url: http://ieeexplore.ieee.
org/.

[20] Lei Ren et al. “Multilevel Interaction Model for Hierarchical Tasks in Informa-
tion Visualization”. In: Proceedings of the 6th International Symposium on Vi-
sual Information Communication and Interaction. VINCI ’13. Tianjin, China:
ACM, 2013, pp. 11–16. isbn: 978-1-4503-1988-1. doi: 10.1145/2493102.

2493104. url: http://doi.acm.org/10.1145/2493102.2493104.

[21] Yvonne Rogers, Helen Sharp, and Jenny Preece. Interaction Design – Beyond
Human-Computer Interaction, 3rd Edition. Wiley, 2011, pp. I–XV, 1–585.
isbn: 978-0-470-66576-3.

[22] m.c. schraefel and David Karger. “The Pathetic Fallacy of RDF”. In: Interna-
tional Workshop on the Semantic Web and User Interaction (SWUI) 2006.
2006. url: http : / / swui . semanticweb . org / swui06 / papers / Karger /

Pathetic_Fallacy.html (visited on 2015-05-30).

[23] Mohammad Ghoniem, Jean-Daniel Fekete, and Philippe Castagliola. “On the
Readability of Graphs Using Node-link and Matrix-based Representations: A
Controlled Experiment and Statistical Analysis”. In: Information Visualiza-
tion 4.2 (2005-07), pp. 114–135. issn: 1473-8716. doi: 10.1057/palgrave.
ivs.9500092. url: http://dx.doi.org/10.1057/palgrave.ivs.9500092.

[24] Nathalie Henry, Jean-Daniel Fekete, and Michael J. McGuffin. “NodeTrix: a
Hybrid Visualization of Social Networks”. In: IEEE Transactions on Visualiza-
tion and Computer Graphics 13.6 (2007-11), pp. 1302–1309. issn: 1077-2626.
doi: 10.1109/TVCG.2007.70582.

[25] Amalia Kallergi and Fons J. Verbeek. “Video Games for Collection Explo-
ration: Games for and out of Data Repositories”. In: Proceedings of the 14th
International Academic MindTrek Conference: Envisioning Future Media En-
vironments. MindTrek ’10. Tampere, Finland: ACM, 2010, pp. 143–146. isbn:
978-1-4503-0011-7. doi: 10.1145/1930488.1930518. url: http://doi.acm.
org/10.1145/1930488.1930518.

[26] Edwin L. Hutchins, James D. Hollan, and Donald A. Norman. “Direct Manip-
ulation Interfaces”. In: Human-Computer Interaction 1.4 (1985-12), pp. 311–
338. issn: 0737-0024. doi: 10.1207/s15327051hci0104_2. url: http://dx.
doi.org/10.1207/s15327051hci0104_2.

[27] Ben Shneiderman. “Direct Manipulation: A Step Beyond Programming Lan-
guages”. In: Computer 16.8 (1983-08), pp. 57–69. issn: 0018-9162. doi: 10.
1109/MC.1983.1654471.

https://scholar.google.com/
http://dl.acm.org/
http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://dx.doi.org/10.1145/2493102.2493104
http://dx.doi.org/10.1145/2493102.2493104
http://doi.acm.org/10.1145/2493102.2493104
http://swui.semanticweb.org/swui06/papers/Karger/Pathetic_Fallacy.html
http://swui.semanticweb.org/swui06/papers/Karger/Pathetic_Fallacy.html
http://dx.doi.org/10.1057/palgrave.ivs.9500092
http://dx.doi.org/10.1057/palgrave.ivs.9500092
http://dx.doi.org/10.1057/palgrave.ivs.9500092
http://dx.doi.org/10.1109/TVCG.2007.70582
http://dx.doi.org/10.1145/1930488.1930518
http://doi.acm.org/10.1145/1930488.1930518
http://doi.acm.org/10.1145/1930488.1930518
http://dx.doi.org/10.1207/s15327051hci0104_2
http://dx.doi.org/10.1207/s15327051hci0104_2
http://dx.doi.org/10.1207/s15327051hci0104_2
http://dx.doi.org/10.1109/MC.1983.1654471
http://dx.doi.org/10.1109/MC.1983.1654471

REFERENCES 32

[28] Vijay Kumar and Richard Furuta. “Visualization of Relationships”. In: Pro-
ceedings of the Tenth ACM Conference on Hypertext and Hypermedia : Return-
ing to Our Diverse Roots: Returning to Our Diverse Roots. HYPERTEXT ’99.
Darmstadt, Germany: ACM, 1999, pp. 137–138. isbn: 1-58113-064-3. doi: 10.
1145/294469.294505. url: http://doi.acm.org/10.1145/294469.294505.

[29] Jouni Huotari, Kalle Lyytinen, and Marketta Niemelä. “Improving Graphical
Information System Model Use with Elision and Connecting Lines”. In: ACM
Trans. Comput.-Hum. Interact. 11.1 (2004-03), pp. 26–58. issn: 1073-0516.
doi: 10.1145/972648.972650. url: http://doi.acm.org/10.1145/

972648.972650.

[30] Ozgur Turetken and Ramesh Sharda. “Visualization of Web Spaces: State of
the Art and Future Directions”. In: SIGMIS Database 38.3 (2007-07), pp. 51–
81. issn: 0095-0033. doi: 10.1145/1278253.1278260. url: http://doi.
acm.org/10.1145/1278253.1278260.

[31] Jonathan D. Cohen. “Drawing Graphs to Convey Proximity: An Incremental
Arrangement Method”. In: ACM Trans. Comput.-Hum. Interact. 4.3 (1997-09),
pp. 197–229. issn: 1073-0516. doi: 10.1145/264645.264657. url: http:

//doi.acm.org/10.1145/264645.264657.

[32] Gilles Bailly, Eric Lecolinet, and Laurence Nigay. “Flower Menus: A New Type
of Marking Menu with Large Menu Breadth, Within Groups and Efficient
Expert Mode Memorization”. In: Proceedings of the Working Conference on
Advanced Visual Interfaces. AVI ’08. Napoli, Italy: ACM, 2008, pp. 15–22.
isbn: 978-1-60558-141-5. doi: 10.1145/1385569.1385575. url: http://

doi.acm.org/10.1145/1385569.1385575.

[33] Azza Abouzied, Joseph Hellerstein, and Avi Silberschatz. “DataPlay: Interac-
tive Tweaking and Example-driven Correction of Graphical Database Queries”.
In: Proceedings of the 25th Annual ACM Symposium on User Interface Soft-
ware and Technology. UIST ’12. Cambridge, Massachusetts, USA: ACM, 2012,
pp. 207–218. isbn: 978-1-4503-1580-7. doi: 10.1145/2380116.2380144. url:
http://doi.acm.org/10.1145/2380116.2380144.

[34] Nancy H. McDonald and Michael Stonebraker. “CUPID – The Friendly Query
Language”. In: ACM Pacific. 1975, pp. 127–131.

[35] Michael Rietzler et al. “homeBLOX: Introducing Process-driven Home Au-
tomation”. In: Proceedings of the 2013 ACM Conference on Pervasive and
Ubiquitous Computing Adjunct Publication. UbiComp ’13 Adjunct. Zurich,
Switzerland: ACM, 2013, pp. 801–808. isbn: 978-1-4503-2215-7. doi: 10.1145/
2494091.2497321. url: http://doi.acm.org/10.1145/2494091.2497321.

[36] NoFlo.org. NoFlo Examples. 2015. url: http://noflojs.org/example/

(visited on 2015-05-31).

[37] Kirsten N. Whitley, Laura R. Novick, and Doug Fisher. “Evidence in favor of
visual representation for the dataflow paradigm: An experiment testing Lab-
VIEW’s comprehensibility”. In: International Journal of Human-Computer
Studies 64.4 (2006), pp. 281–303. issn: 1071-5819. doi: http://dx.doi.org/
10.1016/j.ijhcs.2005.06.005. url: http://www.sciencedirect.com/
science/article/pii/S1071581905001163.

http://dx.doi.org/10.1145/294469.294505
http://dx.doi.org/10.1145/294469.294505
http://doi.acm.org/10.1145/294469.294505
http://dx.doi.org/10.1145/972648.972650
http://doi.acm.org/10.1145/972648.972650
http://doi.acm.org/10.1145/972648.972650
http://dx.doi.org/10.1145/1278253.1278260
http://doi.acm.org/10.1145/1278253.1278260
http://doi.acm.org/10.1145/1278253.1278260
http://dx.doi.org/10.1145/264645.264657
http://doi.acm.org/10.1145/264645.264657
http://doi.acm.org/10.1145/264645.264657
http://dx.doi.org/10.1145/1385569.1385575
http://doi.acm.org/10.1145/1385569.1385575
http://doi.acm.org/10.1145/1385569.1385575
http://dx.doi.org/10.1145/2380116.2380144
http://doi.acm.org/10.1145/2380116.2380144
http://dx.doi.org/10.1145/2494091.2497321
http://dx.doi.org/10.1145/2494091.2497321
http://doi.acm.org/10.1145/2494091.2497321
http://noflojs.org/example/
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijhcs.2005.06.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.ijhcs.2005.06.005
http://www.sciencedirect.com/science/article/pii/S1071581905001163
http://www.sciencedirect.com/science/article/pii/S1071581905001163

REFERENCES 33

[38] FreeMind. FreeMind – free mind mapping software. 2014-04-12. url: http:
//freemind.sourceforge.net/ (visited on 2015-05-30).

[39] Laszlo Laufer, Peter Halacsy, and Adam Somlai-Fischer. “Prezi Meeting: Col-
laboration in a Zoomable Canvas Based Environment”. In: CHI ’11 Extended
Abstracts on Human Factors in Computing Systems. CHI EA ’11. Vancou-
ver, BC, Canada: ACM, 2011, pp. 749–752. isbn: 978-1-4503-0268-5. doi:
10.1145/1979742.1979673. url: http://doi.acm.org/10.1145/1979742.
1979673.

[40] José Barranquero Tolosa et al. “Interactive web environment for collaborative
and extensible diagram based learning”. In: Computers in Human Behavior
26.2 (2010), pp. 210–217. issn: 0747-5632. doi: http://dx.doi.org/10.
1016/j.chb.2009.10.003.

[41] Vicenç Gómez, Andreas Kaltenbrunner, and Vicente López. “Statistical Anal-
ysis of the Social Network and Discussion Threads in Slashdot”. In: Proceedings
of the 17th International Conference on World Wide Web. WWW ’08. Bei-
jing, China: ACM, 2008, pp. 645–654. isbn: 978-1-60558-085-2. doi: 10.1145/
1367497.1367585. url: http://doi.acm.org/10.1145/1367497.1367585.

[42] Warren Sack. “Discourse Diagrams: Interface Design for Very Large-Scale
Conversations”. In: 33rd Annual Hawaii International Conference on System
Sciences (HICSS-33), 4–7 January, 2000, Maui, Hawaii, USA. 2000. doi:
10.1109/HICSS.2000.926717. url: http://dx.doi.org/10.1109/HICSS.
2000.926717.

[43] Lucid Software Inc. Lucidchart – Flow Chart Maker & Online Diagram Soft-
ware. 2015. url: https://www.lucidchart.com/ (visited on 2015-06-15).

[44] Subatomic Software. Audulus – Design Sound from First Principles. 2015.
url: http://audulus.com/ (visited on 2015-05-30).

[45] Michel Beaudouin-Lafon. “Instrumental Interaction: An Interaction Model for
Designing post-WIMP User Interfaces”. In: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems. CHI ’00. The Hague, The
Netherlands: ACM, 2000, pp. 446–453. isbn: 1-58113-216-6. doi: 10.1145/
332040.332473. url: http://doi.acm.org/10.1145/332040.332473.

[46] W3C. SPARQL 1.1 Overview – W3C Recommendation 21 March 2013. 2013.
url: http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/.

[47] Frederik Hogenboom et al. “RDF-GL: A SPARQL-Based Graphical Query
Language for RDF”. English. In: Emergent Web Intelligence: Advanced In-
formation Retrieval. Ed. by Richard Chbeir et al. Advanced Information and
Knowledge Processing. Springer London, 2010, pp. 87–116. isbn: 978-1-84996-
073-1. doi: 10.1007/978-1-84996-074-8_4. url: http://dx.doi.org/10.
1007/978-1-84996-074-8_4.

[48] Alistair Russell et al. “NITELIGHT: A Graphical Tool for Semantic Query
Construction”. In: Semantic Web User Interaction Workshop (SWUI 2008).
Event Dates: 5th April 2008. 2008-04. url: http://eprints.soton.ac.uk/
264975/.

[49] WikiData.org. Q5597179 – graphical user interface element. 2015-01-09. url:
https://www.wikidata.org/wiki/Q5597179 (visited on 2015-06-10).

http://freemind.sourceforge.net/
http://freemind.sourceforge.net/
http://dx.doi.org/10.1145/1979742.1979673
http://doi.acm.org/10.1145/1979742.1979673
http://doi.acm.org/10.1145/1979742.1979673
http://dx.doi.org/http://dx.doi.org/10.1016/j.chb.2009.10.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.chb.2009.10.003
http://dx.doi.org/10.1145/1367497.1367585
http://dx.doi.org/10.1145/1367497.1367585
http://doi.acm.org/10.1145/1367497.1367585
http://dx.doi.org/10.1109/HICSS.2000.926717
http://dx.doi.org/10.1109/HICSS.2000.926717
http://dx.doi.org/10.1109/HICSS.2000.926717
https://www.lucidchart.com/
http://audulus.com/
http://dx.doi.org/10.1145/332040.332473
http://dx.doi.org/10.1145/332040.332473
http://doi.acm.org/10.1145/332040.332473
http://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
http://dx.doi.org/10.1007/978-1-84996-074-8_4
http://dx.doi.org/10.1007/978-1-84996-074-8_4
http://dx.doi.org/10.1007/978-1-84996-074-8_4
http://eprints.soton.ac.uk/264975/
http://eprints.soton.ac.uk/264975/
https://www.wikidata.org/wiki/Q5597179

REFERENCES 34

[50] Alvaro Graves. Visual RDF. 2015. url: http://graves.cl/visualRDF/

(visited on 2015-06-10).

[51] Bryan O’Sullivan. “Making Sense of Revision-control Systems”. In: Commun.
ACM 52.9 (2009-09), pp. 56–62. issn: 0001-0782. doi: 10.1145/1562164.
1562183. url: http://doi.acm.org/10.1145/1562164.1562183.

[52] Hsiang-Ting Chen, Li-Yi Wei, and Chun-Fa Chang. “Nonlinear Revision Con-
trol for Images”. In: ACM Trans. Graph. 30.4 (2011-07), 105:1–105:10. issn:
0730-0301. doi: 10.1145/2010324.1965000. url: http://doi.acm.org/10.
1145/2010324.1965000.

[53] GitHub Inc. Network Graph – alangrafu/visualRDF. 2015. url: https://

github.com/alangrafu/visualRDF/network (visited on 2015-06-10).

[54] Raphaël Hoarau and Stéphane Conversy. “Augmenting the Scope of Inter-
actions with Implicit and Explicit Graphical Structures”. In: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. CHI ’12.
Austin, Texas, USA: ACM, 2012, pp. 1937–1946. isbn: 978-1-4503-1015-4. doi:
10.1145/2207676.2208337. url: http://doi.acm.org/10.1145/2207676.
2208337.

[55] Harold W. Thimbleby, Paul A. Cairns, and Matt Jones. “Usability analysis
with Markov models”. In: ACM Trans. Comput.-Hum. Interact. 8.2 (2001),
pp. 99–132. doi: 10.1145/376929.376941. url: http://doi.acm.org/10.
1145/376929.376941.

[56] George W. Furnas. “Generalized Fisheye Views”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. CHI ’86. Boston, Mas-
sachusetts, USA: ACM, 1986, pp. 16–23. isbn: 0-89791-180-6. doi: 10.1145/
22627.22342. url: http://doi.acm.org/10.1145/22627.22342.

[57] Doug Schaffer et al. “Navigating Hierarchically Clustered Networks Through
Fisheye and Full-zoom Methods”. In: ACM Trans. Comput.-Hum. Interact.
3.2 (1996-06), pp. 162–188. issn: 1073-0516. doi: 10.1145/230562.230577.
url: http://doi.acm.org/10.1145/230562.230577.

[58] Masashi Toyoda and Etsuya Shibayama. “Hyper Mochi Sheet: A Predictive Fo-
cusing Interface for Navigating and Editing Nested Networks Through a Multi-
Focus Distortion-Oriented View”. In: Proceeding of the CHI ’99 Conference on
Human Factors in Computing Systems: The CHI is the Limit, Pittsburgh, PA,
USA, May 15–20, 1999. 1999, pp. 504–511. doi: 10.1145/302979.303145.
url: http://doi.acm.org/10.1145/302979.303145.

[59] Benjamin B. Bederson. “The promise of zoomable user interfaces”. In: Be-
haviour & IT 30.6 (2011), pp. 853–866. doi: 10 . 1080 / 0144929X . 2011 .

586724. url: http://dx.doi.org/10.1080/0144929X.2011.586724.

[60] Christian Tominski, James Abello, and Heidrun Schumann. “CGV - An in-
teractive graph visualization system”. In: Computers & Graphics 33.6 (2009),
pp. 660–678. doi: 10.1016/j.cag.2009.06.002. url: http://dx.doi.org/
10.1016/j.cag.2009.06.002.

http://graves.cl/visualRDF/
http://dx.doi.org/10.1145/1562164.1562183
http://dx.doi.org/10.1145/1562164.1562183
http://doi.acm.org/10.1145/1562164.1562183
http://dx.doi.org/10.1145/2010324.1965000
http://doi.acm.org/10.1145/2010324.1965000
http://doi.acm.org/10.1145/2010324.1965000
https://github.com/alangrafu/visualRDF/network
https://github.com/alangrafu/visualRDF/network
http://dx.doi.org/10.1145/2207676.2208337
http://doi.acm.org/10.1145/2207676.2208337
http://doi.acm.org/10.1145/2207676.2208337
http://dx.doi.org/10.1145/376929.376941
http://doi.acm.org/10.1145/376929.376941
http://doi.acm.org/10.1145/376929.376941
http://dx.doi.org/10.1145/22627.22342
http://dx.doi.org/10.1145/22627.22342
http://doi.acm.org/10.1145/22627.22342
http://dx.doi.org/10.1145/230562.230577
http://doi.acm.org/10.1145/230562.230577
http://dx.doi.org/10.1145/302979.303145
http://doi.acm.org/10.1145/302979.303145
http://dx.doi.org/10.1080/0144929X.2011.586724
http://dx.doi.org/10.1080/0144929X.2011.586724
http://dx.doi.org/10.1080/0144929X.2011.586724
http://dx.doi.org/10.1016/j.cag.2009.06.002
http://dx.doi.org/10.1016/j.cag.2009.06.002
http://dx.doi.org/10.1016/j.cag.2009.06.002

REFERENCES 35

[61] Thomas Baudel. “From information visualization to direct manipulation: ex-
tending a generic visualization framework for the interactive editing of large
datasets”. In: Proceedings of the 19th Annual ACM Symposium on User In-
terface Software and Technology, Montreux, Switzerland, October 15-18, 2006.
2006, pp. 67–76. doi: 10.1145/1166253.1166265. url: http://doi.acm.
org/10.1145/1166253.1166265.

[62] Satu Elisa Schaeffer. “Graph clustering”. In: Computer Science Review 1.1
(2007), pp. 27–64. doi: 10 . 1016 / j . cosrev . 2007 . 05 . 001. url: http :

//dx.doi.org/10.1016/j.cosrev.2007.05.001.

[63] Robert van Liere and Wim C. de Leeuw. “GraphSplatting: Visualizing Graphs
as Continuous Fields”. In: IEEE Trans. Vis. Comput. Graph. 9.2 (2003),
pp. 206–212. doi: 10 . 1109 / TVCG . 2003 . 1196007. url: http : / / doi .

ieeecomputersociety.org/10.1109/TVCG.2003.1196007.

[64] Michael Burch and Daniel Weiskopf. “A Flip-Book of Edge-Splatted Small
Multiples for Visualizing Dynamic Graphs”. In: The 7th International Sympo-
sium on Visual Information Communication and Interaction, VINCI ’14, Syd-
ney, NSW, Australia, August 5–8, 2014. 2014, p. 29. doi: 10.1145/2636240.
2636839. url: http://doi.acm.org/10.1145/2636240.2636839.

[65] M. S. Marshall, I. Herman, and G. Melançon. “An object-oriented design
for graph visualization”. In: Software: Practice and Experience 31.8 (2001),
pp. 739–756. issn: 1097-024X. doi: 10.1002/spe.385. url: http://dx.doi.
org/10.1002/spe.385.

[66] Tatiana von Landesberger et al. “Visual Analysis of Large Graphs: State-of-
the-Art and Future Research Challenges”. In: Comput. Graph. Forum 30.6
(2011), pp. 1719–1749. doi: 10.1111/j.1467-8659.2011.01898.x. url:
http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x.

[67] Mark T. Maybury and Wolf Wahlster. “Readings in Intelligent User Inter-
faces”. In: ed. by Mark T. Maybury and Wolfgang Wahlster. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1998. Chap. Intelligent User
Interfaces: An Introduction, pp. 1–13. isbn: 1-55860-444-8. url: http://dl.
acm.org/citation.cfm?id=286013.286437.

[68] Andries van Dam. “Beyond WIMP”. In: IEEE Computer Graphics and Ap-
plications 20.1 (2000), pp. 50–51. doi: 10.1109/38.814559. url: http:

//doi.ieeecomputersociety.org/10.1109/38.814559.

[69] Robert J. K. Jacob, Leonidas Deligiannidis, and Stephen Morrison. “A Soft-
ware Model and Specification Language for Non-WIMP User Interfaces”. In:
ACM Trans. Comput.-Hum. Interact. 6.1 (1999), pp. 1–46. doi: 10.1145/
310641.310642. url: http://doi.acm.org/10.1145/310641.310642.

[70] Robert J. K. Jacob et al. “Reality-based interaction: a framework for post-
WIMP interfaces”. In: Proceedings of the 2008 Conference on Human Factors
in Computing Systems, CHI 2008, 2008, Florence, Italy, April 5-10, 2008.
2008, pp. 201–210. doi: 10.1145/1357054.1357089. url: http://doi.acm.
org/10.1145/1357054.1357089.

http://dx.doi.org/10.1145/1166253.1166265
http://doi.acm.org/10.1145/1166253.1166265
http://doi.acm.org/10.1145/1166253.1166265
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1016/j.cosrev.2007.05.001
http://dx.doi.org/10.1109/TVCG.2003.1196007
http://doi.ieeecomputersociety.org/10.1109/TVCG.2003.1196007
http://doi.ieeecomputersociety.org/10.1109/TVCG.2003.1196007
http://dx.doi.org/10.1145/2636240.2636839
http://dx.doi.org/10.1145/2636240.2636839
http://doi.acm.org/10.1145/2636240.2636839
http://dx.doi.org/10.1002/spe.385
http://dx.doi.org/10.1002/spe.385
http://dx.doi.org/10.1002/spe.385
http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x
http://dx.doi.org/10.1111/j.1467-8659.2011.01898.x
http://dl.acm.org/citation.cfm?id=286013.286437
http://dl.acm.org/citation.cfm?id=286013.286437
http://dx.doi.org/10.1109/38.814559
http://doi.ieeecomputersociety.org/10.1109/38.814559
http://doi.ieeecomputersociety.org/10.1109/38.814559
http://dx.doi.org/10.1145/310641.310642
http://dx.doi.org/10.1145/310641.310642
http://doi.acm.org/10.1145/310641.310642
http://dx.doi.org/10.1145/1357054.1357089
http://doi.acm.org/10.1145/1357054.1357089
http://doi.acm.org/10.1145/1357054.1357089

REFERENCES 36

[71] Reif Larsen. Schematic map of Rome subway station for blind people. 2013-07-04.
url: http://reiflarsen.tumblr.com/post/54580770784/schematic-

map-of-rome-subway-station-for-blind (visited on 2015-05-29).

[72] Sebastian Schmidt et al. “A set of multi-touch graph interaction techniques”.
In: ACM International Conference on Interactive Tabletops and Surfaces, ITS
2010, Saarbrücken, Germany, November 7-10, 2010. 2010, pp. 113–116. doi:
10.1145/1936652.1936673. url: http://doi.acm.org/10.1145/1936652.
1936673.

[73] Deepamehta.de. Welcome to DeepaMehta. 2012-05-22. url: http://www.

deepamehta.de/en (visited on 2015-05-29).

[74] Jörg Richter, Max Völkel, and Heiko Haller. “DeepaMehta - A Semantic Desk-
top”. In: Proceedings of the ISWC 2005 Workshop on The Semantic Desktop
- Next Generation Information Management & Collaboration Infrastructure.
Galway, Ireland, November 6, 2005. 2005. url: http://ceur-ws.org/Vol-
175/30_dm_poster.pdf.

[75] IBM Emerging Technology. Node-RED. 2015. url: http://nodered.org/
(visited on 2015-06-11).

[76] Giuseppe Di Battista et al. Graph Drawing: Algorithms for the Visualization
of Graphs. Prentice-Hall, 1999. isbn: 0-13-301615-3.

[77] Shixia Liu et al. “A survey on information visualization: recent advances and
challenges”. In: The Visual Computer 30.12 (2014), pp. 1373–1393. doi: 10.
1007/s00371-013-0892-3. url: http://dx.doi.org/10.1007/s00371-
013-0892-3.

[78] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. “D3 Data-Driven Doc-
uments”. In: IEEE Trans. Vis. Comput. Graph. 17.12 (2011), pp. 2301–2309.
doi: 10.1109/TVCG.2011.185. url: http://doi.ieeecomputersociety.
org/10.1109/TVCG.2011.185.

[79] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455. http://www.
rfc - editor . org / rfc / rfc6455 . txt. RFC Editor, 2011-12. url: http :

//www.rfc-editor.org/rfc/rfc6455.txt.

[80] Alan Wexelblat and Pattie Maes. “Footprints: History-Rich Tools for Informa-
tion Foraging”. In: Proceeding of the CHI ’99 Conference on Human Factors
in Computing Systems: The CHI is the Limit, Pittsburgh, PA, USA, May 15-
20, 1999. 1999, pp. 270–277. doi: 10.1145/302979.303060. url: http:

//doi.acm.org/10.1145/302979.303060.

[81] Brian Amento et al. “Experiments in social data mining: The TopicShop sys-
tem”. In: ACM Trans. Comput.-Hum. Interact. 10.1 (2003), pp. 54–85. doi:
10.1145/606658.606661. url: http://doi.acm.org/10.1145/606658.
606661.

[82] Mark O. Riedl and Robert St. Amant. “Toward automated exploration of
interactive systems”. In: IUI. 2002, pp. 135–142. doi: 10 . 1145 / 502716 .

502738. url: http://doi.acm.org/10.1145/502716.502738.

[83] Harold Thimbleby. “Action graphs and user performance analysis”. In: Int. J.
Hum.-Comput. Stud. 71.3 (2013), pp. 276–302. doi: 10.1016/j.ijhcs.2012.
10.014. url: http://dx.doi.org/10.1016/j.ijhcs.2012.10.014.

http://reiflarsen.tumblr.com/post/54580770784/schematic-map-of-rome-subway-station-for-blind
http://reiflarsen.tumblr.com/post/54580770784/schematic-map-of-rome-subway-station-for-blind
http://dx.doi.org/10.1145/1936652.1936673
http://doi.acm.org/10.1145/1936652.1936673
http://doi.acm.org/10.1145/1936652.1936673
http://www.deepamehta.de/en
http://www.deepamehta.de/en
http://ceur-ws.org/Vol-175/30_dm_poster.pdf
http://ceur-ws.org/Vol-175/30_dm_poster.pdf
http://nodered.org/
http://dx.doi.org/10.1007/s00371-013-0892-3
http://dx.doi.org/10.1007/s00371-013-0892-3
http://dx.doi.org/10.1007/s00371-013-0892-3
http://dx.doi.org/10.1007/s00371-013-0892-3
http://dx.doi.org/10.1109/TVCG.2011.185
http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.185
http://doi.ieeecomputersociety.org/10.1109/TVCG.2011.185
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
http://www.rfc-editor.org/rfc/rfc6455.txt
http://dx.doi.org/10.1145/302979.303060
http://doi.acm.org/10.1145/302979.303060
http://doi.acm.org/10.1145/302979.303060
http://dx.doi.org/10.1145/606658.606661
http://doi.acm.org/10.1145/606658.606661
http://doi.acm.org/10.1145/606658.606661
http://dx.doi.org/10.1145/502716.502738
http://dx.doi.org/10.1145/502716.502738
http://doi.acm.org/10.1145/502716.502738
http://dx.doi.org/10.1016/j.ijhcs.2012.10.014
http://dx.doi.org/10.1016/j.ijhcs.2012.10.014
http://dx.doi.org/10.1016/j.ijhcs.2012.10.014

REFERENCES 37

[84] Melody Y. Ivory and Marti A Hearst. “The State of the Art in Automat-
ing Usability Evaluation of User Interfaces”. In: ACM Comput. Surv. 33.4
(2001-12), pp. 470–516. issn: 0360-0300. doi: 10.1145/503112.503114. url:
http://doi.acm.org/10.1145/503112.503114.

[85] W3C. RDF 1.1 Primer — Working Group Note 24 June 2014. 2014. url:
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/.

http://dx.doi.org/10.1145/503112.503114
http://doi.acm.org/10.1145/503112.503114
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/

	Introduction
	Interaction
	Syntax of interaction
	Levels of interaction
	Types of interaction

	Instructing
	Conversing
	Manipulating
	Exploring
	Results
	Discussion
	Framework
	Future

	Conclusions
	References

